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NOTE

Effect of Far-Field Boundary Conditions on
Boundary-Layer Transition

1. INTRODUCTION

In a direct numerical simulation (DNS) of spatially growing
disturbances in houndary-layer flows, the infinite domain in the
strcamwise direction v must be truocated to a dinite length,
while (he semi-inlinite extent in the plate-normal direction v
may or may not be truncated. In past simufations, cither a
truncated domain in y | 1-3] has been vsed or the semi-infinite
domain has been mapped to a finite one with a change of
variables [4-7].

The physical problein unequivocally prescribes the boundary
conditions at y — o, Asymptotic boundary conditions can be
implemented when the domain is truncated at a location v
where the mean-flow has reached a constant value. At higher
v locations the asymptotic boundary conditions can be approxi-
mated rather well by mixed boundary conditions (i.e., involving
the function and its derivative and sometimes called Robin
conditions). Simpler conditions such as Thomogeneous
Neumann or Dirichlet conditions can also be used; how-
ever, strictly speaking, these conditions are incorrect. The ques-
tion is whether the loss of accuracy due to these more easily
implemented but approximate boundary conditions is ac-
ceplable.

Here, we look at the effect of the far-field boundary condi-
tions on the evolution of a finite-amplitude two-dimensional
wave in the Blasius boundary layer. We select either asymptotic,
mixed. homogeneous Dirichlet, or homogeneous Neumann con-
ditions and impose these conditions al vartous distanees ¥,
{rom the wall. For this study. we employ the parabolized stabil-
ity cquiations (PPS1E) (o take advamtage ol the low computational
cost (e.g., typically 15 min on a workstation for a fully nonlinear
two-dimensional calculation),

The frequency, the streamwise slarling location x,, and
the initial amplitude of the Tollmien—Schiichting (TS) wave
used here were previously used by Bertolotti et al. [8] in
a comparison of PSE and DNS results. The DNS code of
Spatart mapped the infinite domain in y to a finite domain
via a mapping, which enforced the correct boundary condition
at infinity and avoided (he approximations caused by a
truncated domain. Comparisons ol results between PSE and
DNS showed cxcellent agreement for all modes, including
the mean-flow distortion [9].

In the comparison between DNS and PSE results by Joslin

et al. [10], a discrepancy was found in the mean-flow distortion
component. This discrepancy was attributed to the different
far-field boundary conditions imposed in the two codes; the
DNS cade used homogeneous Dirichlet conditions, and the PSE
cade used homogeneows Dirichlel conditions lor all unsicady
modes and a homogeneous Neumann condition for the stcady
mean-Now distortion term, This discrepancy moltivated the cur-
rent study.

2. GOVERNING EQUATIONS

The reference length is &xs) = V uxy/ U, which is defined
at the streamwise location x,. The corresponding Reynolds
number at x; is Ry = U,8(xp)/v = 400. The nondimensional
frequency of the two-dimensional TS wave is £ = 2 X 10°
wfv/ UL = 86, which yields w = 0.0344.

The PSE equations used in this work are described in Refs.
[8} and [9]. The incompressible disturbance equations arc re-
duced to two variables {the # and v components of velocity)
by taking the curl of the Navier-Stokes equations, eliminating
the w velocity component with the continuily equation, and
teducing the three governing equations to two equations. The
disturbance field is expanded in a six-term Fourier series in
time, 0, wt, 2wt, ..., kot, ..., Swr, which leads to complex
Fourter coefficients i, and £, for the velocity components. These
cquations take the form,

L d”"N_] M
T d e ely *

-

k=0,1.2,...5 ()

where q = {f,, 0} is the vector of profile functions, a, is the
complex wavenumber for mode k composed of a real part vy,
describing the growth rate and an imaginary part kee describing
the wavenumber, the operators L, M, N depend on g, and
frequency ke, and contain derivatives only in y. The operator
L. contains the Orr—Sommerfeld and Squire operators, which
are well known in the parallel-flow stability theory, The right-
hand-side term Ry is the convolution term stemming from the
nonlinear products.

Introducing the finite difference form dqu/dx — (q. — qi)/
Ax and daddx — (@, — af®¥Ax into Eq. (1) yields
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L+2 % N LM qo= R+ o Mg
Ax Ax [ AV

(2)
k=0,1,2.,5

These coupled set of equations can be solved by marching in x.

The physical boundary conditions at y — o impose vanishing
i and O, velocities for the unsteady modes (k > 0) and
vanishing fi, and constant 2, velocities for the steady mode
{k = 0). A finite 0, allows for changes in the displacement
thickness as the flow transitions to turbulence. This condition
becomes G, = 0 in flows over bodies with a bounded stream-
wise extent.

Outside the boundary layer, the operators L, M, N have
constant coefficients, and the solution decays exponentially.
When the computational domain is truncated in this region,
boundary conditions can be imposed that yield the exact solu-
tion at all interior points. These boundary conditions have been
presented by Keller [11] for the Orr—Sommerfeld operator, and
are extended here to the PSE equation. The basic idea is to
require that the solution has a null projection onto the subspace
spanned by the exponentially growing eigensolutions of the
operator on the left-hand side of Eq. (2). These eigensolutions
are evaluated when equation (2) is rewntten as a first order
system. In the present formulation the highest derivative in y
of i is 2, and of § is 4, hence we introduce the vector x, =
{i. &, Oy, OF, 07, 6'}, where the prime denotes differentiation
w.r.L. y, and rewrite (2) as

dx,
A Xy +B—= l'k()’)s (3)
dy

where the matrices A and B depend on k and contain, in addition
to the information in Eqg. (2), the relations (@) dy = i, d(6,)/
dy = 0, d(0 ¥ dy = 0y, and J(0;)/dy = . We then compute,
for each mode k. the eigensolutions {A;, e} that solve [AT —
AB"le; = 0, where T denotes transpose, and relabel these
eigensolutions 50 that A, A;, and A; have a negative real part,
The requirement of zero projection onto the growing eigen-
modes yields the following asymptotic boundary conditions,

xk-BTei=Ck'ei 1=1,23, 4)

where

_{_L _ b } .
“= {c, + )\i)’(Cz“'/\i), ®)

is obtained by approximating each component of the forcing r,
in the neighborhood of the boundary by a function of the form
be*, and the dot product in Eq. (4) is defined asa+b = Z ab;.
The spatial DNS code solves the disturbance form of the full
Navier—Stokes equations with high-order finite- and compact-
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difference methods and spectral methods. Homogeneous Dir-
ichlet conditions are imposed in the far-field and at the wall,
inflow condittons consist of the Blasius and eigenfunctions
provided by linear stability theory, and the buffer domain tech-
nique [i2] is used for the streamwise outflow condition. Refer
to Ref. [13] for a discussion of accuracy issues with grid re-
finement and outflow buffer domain treatment.

3. RESULTS

Results were obtained for cases with the upper boundary
placed at y.., = 15, 20, 30, 45, 60, 90, and 130. For each
of these cases, computations were made that employed the
following conditions for modes k = 0, 1, 2, 3, 4, 5:

Dirichiet Conditions.

=0 =0 —=0 (6)
¥
Neumann Conditions.
o ab 30
—5=0, =0, 7= 0 M
dy ay ay?
Mixed Conditions.
ai . " 30, Iy
a—;+akuk20, 5-+akok:0, —(;)-F ak5;=
{8)
Asymptotic Conditions.
x,-Ble, = ¢ ¢, i=1,2,3 (%)

The conditions for the highest derivative of © with respect to
vare derived from the continuity equation. The mixed boundary
conditions and the asymptotic boundary conditions are altered
for the mean-flow distortion term (i.e., k = 0), to the form
discussed above, namely,

at,

A 0’ Yo
iy ay

0 (10)

s -

The initial condition was composed of the single Fourier
mode k = 1, with an amplitude of 0.25 percent rms. based on
the maximum of the ¥ component of velocity.

High resolution in the plate-normal direction y was obtained
with five subdomains, In each subdomain, the f#, and &, velocity
components were expanded with 18 Chebyshev polynomials.
The step size in x was set to Ax = 10.
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FIG. 1. Amplitudes of F =0, £ = 1, and F = 2 modes from PSE (solid
line) and DNS (symbols) with Dirichlet boundary conditions.

Figure I shows the evolution of the disturbance amplitude
based on the « component of velocity for the Fourier modes
F =1,F =2, and the steady component F' = ( with a Reynolds
number of R = U,8x)/v = \/E for results calculated
by both the PSE and DNS codes. Both codes enforced the
Dirichlet boundary conditions (Eq. (1)) at vy, = 130. The
results agree well, which reasonably indicates the equivalence
of the two procedures for the flat-plate problem.

Next, computations were conducted with PSE theory to com-
pare the maximum amplitudes of F = 0 and F = 1 modes as
function of far-field boundary locations. At the downstream
location that corresponds to R = 940, Fig. 2 displays the depen-
dence of the maximum amplitudes, based on the # component
of velocity, with the truncated far-field boundary location y .,
for the £ = 1 and F = 0 modes. The solid line represents
results that were obtained with asymptotic boundary conditions
(Eq. (9)), the dashed line represents the mixed conditions (Eq.
(8)), the square symbols represent Dirichlet conditions (Eq.
(6)), the triangular symbols represent Neumann conditions (Eq.
(7)), and the arrows denote the results obtained by applying
the physical boundary conditions at infinity (using an algebraic
mapping). Note that the boundary-layer edge (99% definition)
grows fromy = 5at R = 400toy = 12 at R = 940; therefore,
the far-field boundary must be beyond y = 2.
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FIG. 2. Maximum amplitudes of F = 0 and £ = 1 modes as function of

¥ for the case of asymptotic (solid line), mixed (dashed line), Neumann
(triangles), and Dirichlet boundary conditions (squares), and physical boundary
conditions at y,,, — % (arrow) at R = 940,
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The results obtained with the asymptotic boundary conditions
are independent of y,, once the mean-flow has reached a con-
stant value {e.g., with less than a 0.01% variation). To increase
accuracy, the operators in Eq. (3} can be evaluated with the
mean-flow value at infinity, rather than at y,,.; however, for
Vmax < 20 the mean-flow is still varying when the boundary is
reached, and, consequently, the asymptotic boundary conditions
become only approximate. The dip in the solid curve in Fig.
2 displays this fact. The evaluation of ¢, in Eq. (4} can also
affect accuracy; when the exponential fit (which is exact in
the linear case} of ry is replaced by a two term Taylor series
approximation of r, at y.,,, the calculated growth rates fall
15% short of the exact value, even for y ., = 20.

The mixed boundary conditions impose the exponential de-
cay exp(—ay) to the solution. The complex wavenumber « is
an eigenvalue of AT — AB7, and when the other two decaying
eigensolutions have a decay rate much higher than a, the mixed
boundary conditions become equivalent to the asymptotic
boundary conditions, provided v... is sufficiently large. A dif-
ference between the dashed and solid curves in Fig. 2 is barely
visible at v, < 35, although such a close agreement should
not always be expected. However, for y,, = 35, the mixed
and asymptotic boundary conditions lead to the same solutions,
Because the mixed conditions are homogeneous and have a
simpler form, they are easier to implement.

The Neumann conditions yield accurate results for y,, = 45.
These conditions allow for a change in the boundary-layer dis-
placement thickness (i.e., nonzero v velocity for F = 0 at y.).
Similarly, Dirichlet boundary conditions lead to accurate results
forthe traveling mode £ = | when y,,,, > 45. However, the steady
component F = 0 is adversely affected by the Dirichlet boundary
conditions even for large values of y .. , as indicated by the square
symbols in Fig. 2a. Furthermore, the v component of velocity
vanishes, which prevents changes from the laminar value of the
boundary-layer displacement thickness. Figure 3 displays the i,
and &, velocity components for the mean-flow distortion mode
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FIG. 3. Velocity components « and v for the F = 0 mode of PSE theory
with asymptotic {line) and Dirichlet (dashed) boundary conditions and DNS
results (symbols) at & = 940.
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TABLE 1
Modal Maximums at R = 940

F=0 F=1
BC type 10 30 High Res. 10 30 High Res.
Asymptolic 0.605 0595 0.596 2,866 2.840 2.844
Mixed 0.597  0.397 0.598 2860 2.853 2.858
Neumann 0.660 0.684 0.684 3709 3.807 3812
Dirichlet 0152 0.286 .298 2010 1855 1.895

{(F = 0) at R = 940. Outside the boundary layer, the &, velocity
decreases linearly to match the zero boundary value at v, =
130. Because the boundary-layer displacement thickness tends
to increase beyond the laminar value, mass conservation forces
a nonzero &, component of velocity outside the boundary layer,
which, in turn, creates an artificial boundary layer at y,, . (Note
that the small errors between the DNS and PSE v, profiles are of
the order 107%, which can be attributed to numerical errors in the
DNS approach.)

All PSE calculations up to this point have been done using 90
Chebyshev polynomials in y per variable, per mode. This high
resolution was chosen in order to remove resolution issues from
the analysis. To assess the effect of the far-field resolution, we
have repeated the computation using two domains, the inner one
going from the wall to y = 5 and the outer one fromy = 5 to
y = 30. A linear mapping from physical to [— 1, 1] was used in
both domains. The resolution in the lower domain was fixed at
18 polynomials per vanable, and in the outer domain either 10
or 30 polynomials were employed. Table I displays the maximum
u amplitude for the F = 0 and F = 1 modes at R = 940 obtained
with different boundary conditions. The exact values are 0.595%
for F' = 0 and 2.843% for F = 1. {The column labeled ‘*High
Res’’” displays the values shown in Fig. 2.)

The asymptotic, mixed, and Neumann conditions display
only a small variation with change in resolution. The Dirichlet
condition is more sensitive, due to the need to resolve the
artificial boundary-layer at the upper domain, shown in Fig. 3.
The largest difference between results, thus, comes from the
boundary condition implemented, rather than the resolution.

4. CONCLUSIONS

The use of a finite domain in y plus Dirichlet and Neumann
boundary conditions eliminates some coding difficulties in di-
rect Navier—Stokes simulation codes, but introduces errors. As
in the case considered here, the errors are small when the
truncation location y., is located well into the region of expo-
nential decay of the disturbances. An exception is the steady
component £ = 0, which does not decay in the free stream
and for which the error introduced by the use of Dirichlet
conditions does not vanish as y.,, is increased. A similar error
also is expected for three-dimensional steady disturbances be-
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cause they decay slowly (ie., as in exp(—B%)) in the free
stream. The errors introduced in the calculation of traveling
modes by either Dirichlet or Neumann conditions, on the other
hand, are negligible if a truncation location y,, is chosen suffi-
ciently far from the plate. In contrast, asymptotic boundary
conditions and mixed boundary conditions yield accurate results
when imposed beyend the 99.99% definition of the boundary
layer edge. The asymptotic conditions are exact, but require a
significantly greater amount of coding to implement,
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